Glivenko theorems for substructural logics over FL
نویسندگان
چکیده
It is well known that classical propositional logic can be interpreted in intuitionistic propositional logic. In particular Glivenko’s theorem states that a formula is provable in the former iff its double negation is provable in the latter. We extend Glivenko’s theorem and show that for every involutive substructural logic there exists a minimum substructural logic that contains the first via a double negation interpretation. Our presentation is algebraic and is formulated in the context of residuated lattices. In the last part of the paper, we also discuss some extended forms of the Kolmogorov translation and we compare it to the Glivenko translation. §
منابع مشابه
Glivenko Type Theorems for Intuitionistic Modal Logics
In this article we deal with Glivenko type theorems for intuitionistic modal logics over Prior’s MIPC. We examine the problems which appear in proving Glivenko type theorems when passing from the intuitionistic propositional logic Int to MIPC. As a result we obtain two different versions of Glivenko’s theorem for logics over MIPC. Since MIPC can be thought of as a one-variable fragment of the i...
متن کاملSubstructural Logics over Fl I: Algebraization, Parametrized Local Deduction Theorem and Interpolation
Substructural logics have received a lot of attention in recent years from the communities of both logic and algebra. We discuss the algebraization of substructural logics over the full Lambek calculus and their connections to residuated lattices, and establish a weak form of the deduction theorem that is known as parametrized local deduction theorem. Finally, we study certain interpolation pro...
متن کاملNonassociative Substructural Logics and their semilinear Extensions: Axiomatization and Completeness Properties
Substructural logics extending the full Lambek calculus FL have largely benefited from a systematical algebraic approach based on the study of their algebraic counterparts: residuated lattices. Recently, a non-associative generalization of FL (which we call SL) has been studied by Galatos and Ono as the logics of lattice-ordered residuated unital groupoids. This paper is based on an alternative...
متن کاملA short proof of Glivenko theorems for intermediate predicate logics
We give a simple proof-theoretic argument showing that Glivenko’s theorem for propositional logic and its version for predicate logic follow as an easy consequence of the deduction theorem, which also proves some Glivenko type theorems relating intermediate predicate logics between intuitionistic and classical logic. We consider two schemata, the double negation shift (DNS) and the one consisti...
متن کاملFull Lambek Calculus with Contraction is Undecidable
Among propositional substructural logics, these obtained from Gentzen’s sequent calculus for intuitionistic logic (LJ) by removing a subset of the rules contraction (c), exchange (e), left weakening (i), and right weakening (o) play a prominent role, e.g. in [3] such logics are called basic substructural logics. If all above mentioned rules are removed from LJ then the full Lambek calculus is o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 71 شماره
صفحات -
تاریخ انتشار 2006